ISO50

RSS

GO 70° NORTH: Alexander Kopatz

8518662399_19879c62da_b
8519779366_caf4701c2e_o
9265094558_1ab3b3d2c3_o
9265095554_5bccc3e6e6_o
8451864378_509d352c24_o
8503852003_9b827b7160_o
8451865380_065b540280_o
vsco_062713_2
8403578534_e6f5004438_b
8343235208_a23d30c18b_b
8418128386_2b958a37e5_o

Alexander Kopatz is a biologist and wildlife researcher from Svanvik, Norway, who I’ve been following for sometime now through his blog, GO 70° NORTH. I love the way his nostalgic and subtle tones match the stark and expansive landscapes he works in. Highly recommended that you follow him on his blog or updates through his Facebook and Instagram.

Posted by: Owen

James Webb Space Telescope

mirror44mirror39mirror45osimses1mirror3312_22_11jwst-releaseheic9901a

Science!

Over twenty years in the making and set for a 2018 launch, the James Webb Space Telescope (JWST) is the single most advanced space telescope ever constructed. Successor to NASA’s beloved Hubble Space Telescope, JWST has been purpose-built for studying the infrared portion of the electromagnetic spectrum to give astronomers an ability of seeing past clouds of dust and gas and further back to the beginning of the Universe than we ever have. How far? According to NASA the JWST will see the Universe’s very first star formations taking place only 100 to 250 million years after the Big Bang. Such distant and precise observations promise to unleash a torrent of new discoveries and unlock fundamental quandaries about the origin of the cosmos and life in the Universe.

A few interesting facts:

• JWST’s primary mirror is a 6.5 meter diameter gold coated beryllium reflector that is too large for contemporary launch vehicles, so the mirror is being composed of 18 hexagonal segments (as seen above), which will all unfold after the telescope is launched. Why Hexagons? It’s beyond my comprehension, but supposedly this has something to do with hexagons having a perimeter less than that of a square over a given area, which translates to a gained efficiency for steering the mirror segments and focusing the telescope.

• The telescope will maintain an L2 orbit, meaning that it will orbit in earth’s shadow and around the sun, not the earth. The idea here is to eliminate all possible heat / light sources, such as Earth’s heat-shimmer, and keep the telescope as cold as possible. How cold? Extremely. Cold. The JWST’s mid-infrared instrument (MIRI) will operate at a set temperature of 7 Kelvins, or -266° C / -447° F, through the use of a helium refrigerator, or cryocooler system (source).

• Although JWST’s primary goal is to study the first galaxies or stars that formed after the Big Bang, the telescope is also capable of measuring the physical and chemical properties of planetary systems within our Milky Way and will investigate the potential for life in those planetary systems.

• When launched, some scientists suggest the telescope will represent a greater technological achievement than landing on the moon.

Posted by: Owen Perry

Saturn Hexagon

PIA14944_SaturnHur1000Saturn_north_polar_vortex_2012-11-27saturn-hexagon-vortex-cassini-photosaturnhexagonsaturn_hex_5506e7a8-saturnhexagon-44

First discovered by the Voyager spacecraft in the early 1980s, NASA has recently released new images of the mysterious hexagon-shaped storm on Saturn’s northern pole. Taken with their Cassini Spacecraft, visible light images like this were not originally possible when Cassini arrived at Saturn back in 2004 due to the entire northern hemisphere being in winter solstice.

Size

The hexagon measures 25,000 km (15,500 mi) across, with each side being 13,800 km (8,600 mi) long. As the above image demonstrates, it’s wide enough to fit nearly four earth’s inside of it.

Composition

The hexagonal ring itself is created by a jet stream, while the center contains a spiralling vortex of clouds. Scientists say that the storm reaches speeds up to 354 km/h (220 mph).

Explanation?

In short, we can’t figure it out. Namely, scientists don’t currently understand where the storm obtains and expels its energy, or how/why it has stayed in such an organized shape for so long.

You can read more about this hexagonal goodness here and view more images here.

Posted by: Owen Perry

ESO: Paranal Observatory, Chile

eso-paranal-07potw1139apotw1241a (1)potw1251avlt-jfs_4850esopia00066telesgordon-gillet_2eso-vlt-sunsetpotw1036ayb_lgs_beam_8864_cc_d8a5498-ccClose view of the VISTA camera.eso0204aeso0833asombreroeso1145aeso1012aeso1205a

Situated in the Atacama Desert, northern Chile, at 2,635m above sea level exists the Paranal Observatory. Operated by the European Southern Observatory (ESO), the site contains mankind’s most advanced optical instrument, the Very Large Telescope (VLT), as well as a number of other state-of-the-art auxiliary and survey telescopes – most notably the VLT Survey Telescope and VISTA.

The VLT itself is comprised of four unit telescopes, which in 2011 gained the ability to work together to create the VLT Interferometer; an instrument that allows astronomers to see details up to 25 times greater than the individual telescopes can alone. Needless to say, the results offer a staggeringly beautiful view of our cosmos.

You can view many more Paranal Observatory and ESO images on the ESO website. A short film comprised of time lapses from the Paranal Observatory was also released last year. This is embedded below. Fullscreen that mother.

Posted by: Owen Perry
Instagram: Circa 1983

MTA: East Side Access Project

8477003792_e2c22c503d_o
8477004602_35291f397d_o
8477003682_535990d62e_o
8477003614_84fb8a576a_o

ISO 3200!!!

ISO 3200!!!

A captivating set of journalistic style images from the East Side Access project as of February 12, 2013. These images serve not only as a historical record of the tunnel’s construction, but as a stunning example of how far high-end DSLR cameras have come in handling high ISO images. All these images were shot between ISO 3200 – 5000 on a Nikon D4, and – more notably – at sharp apertures and shutter speeds. Images this clean under those lighting conditions simply wouldn’t have been possible even a few years ago.

Oh yeah, the tunnel is pretty neat, too.

(Edit: was asked why ‘billy j mitchell’ was in the last frame. But of course, it was to illustrate how much detail and tone remains in Billy’s skin at high ISO and in dim lighting.)

Posted by: Owen Perry

ALTERNATIVES LANDSCAPES

ed51d5674ba4294deb23dc600e632eaf

bcb6dd3a7079c27339ffeda8df3714ff

94da5bdb9128776db5b611997ad71554

7d4bb51dcd409e134d5bfd0ba696cbc5

2f11e5fa5aae62354af88df7efccc60c

I stumbled on Benoit Paillé the other day and was so totally captivated by his photography. Each photo tells a detailed story.

I think that photography doesn’t represent reality, but creates it.

In this series he used a plastic light square with 300 LED lights that were linked to a dimmer. He used fishing line to hang it from the trees. I’m not sure how he got it to hover over the dirt and rocks.

My approach towards landscape is to incorporate a poetical component that will trigger an emotional response linked to the form and the light. I wanted to create something that wasn’t really a landscape but rather something engineered, so as to move the viewer in a different way.

You can view the rest in this series here

and the rest of his portfolio here

Posted by: Seth Hardie | Instagram: @hallwood

EARLY-1900s RUSSIAN COLOR PHOTOGRAPHY

russia001.sJPG_950_2000_0_75_0_50_50

russia002.sJPG_950_2000_0_75_0_50_50

russia003.sJPG_950_2000_0_75_0_50_50

russia004.sJPG_950_2000_0_75_0_50_50

russia006.sJPG_950_2000_0_75_0_50_50

russia007.sJPG_950_2000_0_75_0_50_50

russia014.sJPG_950_2000_0_75_0_50_50

russia026.sJPG_950_2000_0_75_0_50_50

russia027.sJPG_950_2000_0_75_0_50_50

russia036.sJPG_950_2000_0_75_0_50_50

russia039.sJPG_950_2000_0_75_0_50_50

Between 1909 and 1915, Russian photographer/chemist Sergei Mikhailovich Prokudin-Gorskii traveled across his homeland, using the relatively new technology of color photography to document what he saw. Outfitting a private train car with his own dark room equipment, Prokudin-Gorskii captured landscapes, buildings, and people in a series of breathtaking images. Given the rarity of vibrant color photography from this era, Prokudin-Gorskii’s work is all the more striking: Without sepia tones’ time-distancing effects, the characters in these images feel right there, full of stories of a bygone era and a diverse, colorful culture on the brink of revolution.

Posted by: Todd Goldstein // Twitter: @armsongs